Hình thì bạn thay đổi vị trí điểm M và điểm N nhé.
a) Vì \(BD=\frac{1}{2}BM\left(gt\right)\)
=> D là trung điểm của \(BM.\)
Xét 2 \(\Delta\) \(CBD\) và \(AMD\) có:
\(CD=AD\) (vì D là trung điểm của \(AC\))
\(\widehat{CDB}=\widehat{ADM}\) (vì 2 góc đối đỉnh)
\(BD=MD\) (vì D là trung điểm của \(BM\))
=> \(\Delta CBD=\Delta AMD\left(c-g-c\right)\)
=> \(BC=AM\) (2 cạnh tương ứng) (1).
b) Xét 2 \(\Delta\) \(BCE\) và \(ANE\) có:
\(BE=AE\) (vì E là trung điểm của \(AB\)\(\))
\(\widehat{BEC}=\widehat{AEN}\) (vì 2 góc đối đỉnh)
\(CE=NE\) (vì E là trung điểm của \(CN\))
=> \(\Delta BCE=\Delta ANE\left(c-g-c\right)\)
=> \(BC=AN\) (2 cạnh tương ứng) (2).
c) Cộng theo vế (1) với (2) ta được:
\(AM+AN=BC+BC\)
\(\Rightarrow AM+AN=2BC.\)
Từ (1) và (2) \(\Rightarrow AM=AN\left(=BC\right).\)
Mà A nằm giữa M và N (gt).
\(\Rightarrow\) A là trung điểm của \(MN.\)
\(\Rightarrow\) 3 điểm \(A,M,N\) thẳng hàng.
\(\Rightarrow\) \(AM+AN=MN\)
Mà \(AM+AN=2BC\left(cmt\right)\)
\(\Rightarrow MN=2BC\)
\(\Rightarrow BC=\frac{1}{2}MN\left(đpcm\right).\)
Chúc bạn học tốt!