Cho tam giác ABC nhọn đường tròn tâm o đường kính BC các cá cạnh AB AC theo thứ tự tại E và D, BD và CEcắt nhau tại H a) chứng minh AH vuông góc với BC b) chứng minh bốn điểm A,E,D,H cùng thuộc một đường tròn C) gọi I là tâm của đường tròn đi qua bốn điểm A,D,E,H. Chứng minh rằng ID vuông góc với OD
4.Cho đường tròn (O) đường kính BC. Lấy điểm A bất kì nằm trên đường tròn
( AB> AC ) . Gọi M là giao điểm của tiếp tuyến tại A với đường thẳng BC. Chứng
minh rằng: gócBAO = góc CAM
5. Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Tiếp tuyến kẻ từ A của ( O')
cắt (O) tại C và tiếp tuyến tại A của (O) cắt (O') tại D. Chứng minh rằng:
góc CBA = góc DBA
cho tam giác abc nội tiếp đường tròn tâm o. tia phân giác của góc abc cắt đường tròn tâm o tại d. tiếp tuyến tại d của đường tròn tâm o cắt 2 đường thẳng ab và ac lần lượt tại e và f. a, chứng minh ef song song với cb. b, chứng minh ab.af=ac.ae=ad^2
cho (O;R) và dây BC k qua tâm. Tiếp tuyến tại B và C của( O;R) cắt nhau tại a a) CM 4 điểm A,B,O,C cùng thuộc 1 đường tròn b) CM: OA vuông góc vs BC c) kẻ đường kính CD của (O) kẻ BH vuống góc vs CD. CMR BC là tai phân giác của góc ABH
Cho đường tròn tâm O bán kính R. Lấy ba điểm bất kì A, B, C trên đường tròn (O). Điểm E bất kì thuộc đoạn thẳng AB (và không trùng với A, B). Đường thẳng d đi qua điểm E và vuông góc với đường thẳng OA cắt đoạn thẳng AC tại điểm F.
Chứng minh \(\widehat{BCF}=\widehat{BEF}=180^0\)
Giả sử A và B là hai điểm phân biệt trên đường tròn (O).Các tiếp tuyến của đường tròn (O) tại A và B cách nhau tại M. Từ A kẻ đường thẳng song song với MB, cắt (O) tại C .MC cắt đường tròn (O) tại E. Các tia AE và MB cắt nhau tại K. Chứng minh rằng:
1) MK2 = AK . EK
2) MK = KB
Giả sử A và B là hai điểm phân biệt trên đường tròn (O).Các tiếp tuyến của đường tròn (O) tại A và B cách nhau tại M. Từ A kẻ đường thẳng song song với MB, cắt (O) tại C .MC cắt đường tròn (O) tại E. Các tia AE và MB cắt nhau tại K. Chứng minh rằng: 1) MK = AK . EK 2) MK = KB