Cho tam giác ABC, các đường cao BD và CE. Gọi M, N là chân các đường vuông góc kẻ từ B, C đến DE. Gọi I là trung điểm của DE, K là trung điểm của BC. Chứng minh rằng:
a) KI vuông góc với ED.
b) EM = DN.
Bài 31: Cho ΔABC, trung tuyến AM. Trên cạnh AC lấy hai điểm D, E sao cho AD = DE= EC. Gọi I là giao điểm của AM và BD
a) Chứng minh ME // ID
b) Chứng minh AI = IM
c) Tính DI, biết BI = 9cm.
Bài 32: Cho ΔABC, các đường trung tuyến BD và CE gặp nhau tại G. Gọi I, K lần lượt là trung điểm của BG, CG.
a) Chứng minh IK // DE và IK = DE
b*) Đường thẳng IK cắt AB, AC lần lượt tại M, N. Qua G vẽ đường thẳng // với BC cắt AB, AC lần lượt tại P, Q.
Chứng minh DE = 3MI và MI = KN, PG = GQ.
* là bài hoặc là câu khó nhé!
Bài 33: Cho ΔABC, các đường trung tuyến BD và CE. Gọi M, N lần lượt là trung điểm của BE, CD. Gọi I, K lần lượt là giao điểm của MN với BD, CE. Chứng minh:
a) MK = ED = IN\
b) MI = IK = KN
Bài 34: Cho điểm A ở ngoài đường thẳng a. Lấy các điểm M, N, P, Q thuộc đường thẳng a sao cho N nằm giữa M và P, P nằm giữa N và Q. Gọi I là trung điểm của AM. Kẻ đường thẳng b qua I và // với đường thẳng a. Chứng minh đường thẳng b đi qua trung điểm của các đoạn thẳng AN, AP, AQ.
Cho tam giác ABC nhọn, đường cao AH, CK. Kẻ AD và CE vuông góc HK. Gọi N là trung điểm của AC. Chứng minh HN = KN và DK = HE
Bài 2 Cho ∆ABC cân tạiA.Gọi M là trung điểm BC. Từ điểm D thuộc BC (BD >
CD) vẽ đường vuông góc với BC cắt AC và tia BA lần lượt tại E và F.
a) Chứng minh tứ giác AMDF là hình thang vuông.
b) Gọi O là trung điểm EC, N là điểm đốixứngvới D qua O. Chứng minh tứ
giác DENC là hình chữ nhật.
c) Lấy I thuộc AB sao cho A là trung điểm IF.Chứng minh I, E, N thẳng hàng.
d) Gọi K là điểm đối xứng với N qua A.Chứng minh tứ giác BDFK là hình
chữ nhật.
Cho tam giác nhon có góc BAC =45 độ. Các đường cao BD và CE cắt nhau tại H. Gọi M,N là trung điểm của AH,BC, O là giao điểm các đường trung trực tam giác ABC.
Chứng minh
1. AH=BC và tứ giác MEND là hình vuông
2. HO đi qua trung điểm I của DE
Cho tam giác ABC vuông tại A. Lấy M là một điểm bất kì thuộc cạnh BC. Gọi MD là đường vuông góc kẻ từ M đến AB, ME là đường vuông góc kẻ từ M đến AC, O là trung điểm của DE.
a) Chứng minh rằng ba điểm A, O, M thằng hàng.
b) Khi điểm M di chuyển trên cạnh BC thì điểm O di chuyển trên đường nào ?
c) Điểm M ở vị trí nào trên cạnh BC thì AM có độ dài nhỏ nhất ?
Cho tam giác ABC có 2 đường trung tuyến BC và CE . Gọi M và N lần lượt là trung điểm của BE và CD . Gọi I và K là giao điểm của MN với BD và CE . Cmr :
a) EDCB là hình thang
b) I là trung điểm của BD và K là trung điểm của CE
c) MI = IK = KN
HELP ME !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho tam giác ABC có 2 đường trung tuyến BC và CD . Gọi M và N lần lượt là trung điểm của BE và CD . Gọi I và K là giao điểm của MN với BD và CE . Cmr :
a) EDCB là hình thang
b) I là trung điểm của BD và K là trung điểm của CE
c) MI = IK = KN
HELP ME !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Tam giác ABC có hai trung tuyến BM và CN cắt nhau tại G. Gọi P và Q lần lượt là các trung điểm BG và CG. a) Chứng minh MNPQ là hình bình hành. b) Từ M kẻ đường thẳng song song với AB cắt BC tại I. Chứng minh A, G, I thẳng hàng. c) Cho AI = 9cm, BC = 10cm. Tính chu vi tứ giác MNPQ.