\(P\left(0\right)=d\in Z\Rightarrow d\in Z\)
\(P\left(1\right)=1+a+b+c+d\in Z\) mà \(d+1\in Z\Rightarrow a+b+c\in Z\)
\(P\left(-1\right)=1-a+b-c+d\in Z\)
\(\Rightarrow P\left(1\right)+P\left(-1\right)=2\left(d+1\right)+2b\in Z\Rightarrow2b\in Z\) do \(2\left(d+1\right)\in Z\)
\(P\left(2\right)=16+8a+4b+2c+d\in Z\)
Mà \(\left\{{}\begin{matrix}2b\in Z\Rightarrow4b\in Z\\d+16\in Z\end{matrix}\right.\) \(\Rightarrow8a+2c\in Z\)
\(\Rightarrow8a+2c-2\left(a+b+c\right)\in Z\)
\(\Rightarrow6a-2b\in Z\Rightarrow6a\in Z\) (do \(2b\in Z\))