Cho đa thức: \(P\left(x\right)=ax^2+bx+c\). Biết P(x)>0 với mọi x thuộc R và a>0. CM: \(\dfrac{5a-3b+2c}{a-b+c}>1\)
Cho \(P\left(x\right)=ax^2+bx+c\). Biết P(x) > 0 với mọi x thuộc R, a>0. Chứng minh: \(\frac{5a-3b+2c}{a-b+c}>1\)
Tính giá trị của biểu thức: \(A=\dfrac{1-ax}{1+ax}\sqrt{\dfrac{1+bx}{1-bx}}\) với \(x=\dfrac{1}{a}.\sqrt{\dfrac{2a}{b}-1}\left(0< a< b< 2a\right)\)
Tính giá trị của biểu thức: \(A=\dfrac{1-ax}{1+ax}\sqrt{\dfrac{1+bx}{1-bx}}\) với \(x=\dfrac{1}{a}.\sqrt{\dfrac{2a}{b}-1}\left(0< a< b< 2a\right)\)
Bài 1: A= \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
a) RÚt gọn A
b) tính A khi \(a^2\) -3 =0
Bài 2:B= \(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
a) Rút gọn B
b) C/m rằng: B>0 với mọi x>0 , x khác 1
Bài 3:C = \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}-1}+\dfrac{2}{a-1}\right)\)
Rút gọn C
Cho 5a+3b+2c=0. CMR
pt \(ax^2+bx+c=0\)có nghiệm
cho \(f\left(x\right)=ax^2+bx+c>0\) với mọi x và a,b,c nguyên dương (b khác 1)
CMR \(\frac{3350a+1340c+4ac+2b+1}{b}>2014\)
Cho phương trình ax2+bx+c=0 (a≠0) có hai nghiệm x1, x2 thỏa mãn ax1+bx2+c=0. CMR: ac(a+c-3b)+b3=0.
Cho x, y, z khác 0 và a, b, c dương thoả mãn ax+by+cz=0 và a+b+c=2017. Tính giá trị của biểu thức: \(P=\dfrac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)