Cho đa thức f(x)=ax^3+bx^2+cx+d. Chứng minh rằng nếu f(x) nhận giá trị nguyên với mọi giá trị nguyên của x thì d; 2b; 6a là các số nguyên
Cho f(x) là 1 đa thức thỏa mãn 3f (x) + 2 f(1-x) = 2x + 9 với mọi x. Tìm giá trị của f(2).
Cho đa thức: f(x)= x^4-x^3-x^2+ax+b thỏa mãn khi chia f(x) lần lượt cho các đa thức x+1 và x-3 thì có dư tương ứng là -15 và 45. Hãy xác định các hệ số a, b và tìm tất cả các nghiệm của đa thức f(x)
Cho đa thức f(x)=x^3-3x^2+2. Với giá trị nguyên nào của a và b thì đa thức f(x) chia hết cho đa thức x^2+ax+b
Cho đa thức f(x)=x^3-3x^2+2. Với giá trị nguyên nào của a và b thì đa thức f(x) chia hết cho đa thức x^2+ax+b
Cho đa thức: \(f\left(x\right)=x^3-3x^2+2\). Với giá trị nguyên nào của a và b thì đa thức f(x) chia hết cho đa thức: \(x^2+ax+b\)
Cho f(x) là một đa thức thỏa mãn 3f(x) + 2f(x-1) = 2x + 9 với mọi gia trị của x. Giá trị của f(2) là bao nhiêu ?
cho f(x) là một đa thức thỏa mãn 3f(x) + 2f(1-x) = 2x+9 với mọi giá trị của x. Giá trị của f(2) là bao nhiêu ?
1. Cho f(x) là đa thức bậc 2 và a, b, c là 3 số thực phân biệt thỏa mãn f(a)=bc, f(b)=ca, f(c)=ab. Chứng minh rằng f(a+b+c)=ab+bc+ca.
2. Giả sử a, b, c, d là 2 trong 4 nghiệm của P(x)=\(x^4+x^3-1\), chứng minh rằng ab là nghiệm của \(x^6+x^4+x^3-x^2-1\)
Em xin cảm ơn!