1, Rút gọn các phân thức sau :
a, \(\dfrac{x^2-xy}{3xy-3y^2}\) (x # y, y # 0)
b, \(\dfrac{2ax^2-4ax+2a}{5b-5bx^2}\) (b # 0, x # \(\pm1\))
c, \(\dfrac{4x^2-4xy}{5x^3-5x^2y}\) ( x 3 ), x # y)
d, \(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\) (x+y+z # 0)
e, \(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\) ( x # 0, x # \(\pm y\))
2, Rút gọn, rồi tính giá trị các phân thức sau :
a, A= \(\dfrac{2x^2+2x\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\) với x = \(\dfrac{1}{2}\)
b, B=\(\dfrac{x^3-x^2y+xy^2}{x^3+y^3}\) với x = -5; y = 10
3, Rút gọn các phân thức sau :
a, \(\dfrac{\left(a+b\right)^2-c^2}{a+b+c}\)
b, \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\)
c, \(\dfrac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\)
Phân tích các đa thức sau thành nhân tử
a, 9x^3y^2 + 3x^2y^2
b, x^2 - 2x + 1 - y^2
- Giúp mình với ạ, mai mình thi rồi-
cho đa thức A=x3+x2y-xy2-y3+x2z-y2z
1. phân tích đa thức thành nhân tử
2. chứng minh rằng nếu x,y,z là các số nguyên và x+y+z chia hết cho 6 thì giá trị đa thức B=A-3xyz cũng chia hết cho 6
1, Rút gọn các phân thức sau :
a, \(\dfrac{5x}{10}\)
b, \(\dfrac{4xy}{2y}\) ( y # 0)
c, \(\dfrac{21x^2y^3}{6xy}\) ( xy # 0)
d, \(\dfrac{2x+2y}{4}\)
e, \(\dfrac{5x-5y}{3x-3y}\) ( x # y)
f, \(\dfrac{-15x\left(x-y\right)}{3\left(y-x\right)}\) ( x # y)
2, Rút gọn các phân thức sau :
a, \(\dfrac{x^2-16}{4x-x^2}\) ( x # 0, x # 4)
b, \(\dfrac{x^2+4x+3}{2x+6}\) ( x # -3)
c, \(\dfrac{15x\left(x+3\right)^3}{5y\left(x+y\right)^2}\) ( y + ( x+y) # 0)
d, \(\dfrac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}\) ( x # y)
e, \(\dfrac{2x+2y+5x+5y}{2x+2y-5x-5y}\) (x # -y)
cho biểu thức Q=\(\dfrac{x^2}{xy+y^2}+\dfrac{y^2}{xy-x^2}+\dfrac{x^2+y^2}{xy}\)với \(x\ne0\);\(x\ne\pm y\)
a, rút gọn Q
b, biết Q có giá trị bằng 2012, tính \(\dfrac{x}{y}\)
c, tính giá trị của biểu thức Q biết x,y là số nguyên dương thỏa mãn y=\(\dfrac{x^2+x+4}{x+1}\)
Biến đổi đa thức sau thành 1 phân thức bằng nó có tử là đa thức A chi trước
a, 3x-2 : 2x^2+7 và A= 3x^2 +x-2
b, (x^2+7x+10) ( x-1) : (x^2+3x+2) ( x^2 -25 )
Cho phân thức M=(a2+b2+c2)(a+b+c)2+(ab+bc+ca)2 / (a+b+c)2-(ab+bc+ca)
a,Tìm các giá trị của a,b,c để phân thức được xác định(tức để mẫu ≠0)
b,Rút gọn M
1.Cho biểu thức: \(A=\left(\dfrac{x+2}{3x}+\dfrac{2}{x+1}-3\right):\dfrac{2-4x}{x+1}-\dfrac{3x+1-x^2}{3x}\)
a.Rút gọn A
b.Tính A tại x=6022
c. Tìm x để A<0
d. Tìm giá trị nguyên của x để A nguyên
2.Phân tích đa thức thành nhân tử: \(x^4+2007x^2+2006x+2007\)
Dùng định nghĩa hai phân thức bằng nhau, hãy tìm đa thức A trong mỗi đẳng thức sau :
a) \(\dfrac{A}{2x-1}=\dfrac{6x^2+3x}{4x^2-1}\)
b) \(\dfrac{4x^2-3x-7}{A}=\dfrac{4x-7}{2x+3}\)
c) \(\dfrac{4x^2-7x+3}{x^2-1}=\dfrac{A}{x^2+2x+1}\)
d) \(\dfrac{x^2-2x}{2x^2-3x-2}=\dfrac{x^2+2x}{A}\)