Bài 3. Cho ∆ABC vuông tại A (AB < AC). Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MD = MB.
a) Chứng minh AB = CD và CD vuông góc AC.
b) Chứng minh AB + BC > 2BM.
c) Chứng minh ABM > CBM
Cho tam giác ABC , gọi M là trung điểm của AC . Trên tia đối MB lấy điểm D sao cho MD=MB a , tam giác ABM = tam giác CDM b , AB song song với CD c , Gọi N là trung điểm của BC . Kéo dài DC cắt AN tại E . Chứng minh C là trung điểm của DE d , Trên tia đối cảu CA lấy F cho CF= CM . Gọi O là trung điểm của EM . Chúng minh B,O,F thẳng hàng
Cho tam giác ABC có AB = AC. M là trung điểm của BC. Chứng minh:
a. Tam giác ABM = tam giác ACM, AM vuông góc với BC
b. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh: AB//CD
c. Cho ME vuông góc với AB (E thuộc AB), MF vuông góc CD (F thuộc CD). Chứng minh: M là trung điểm của EF.
Cho tam giác ABC Gọi M là trung điểm của AC Trên tia đối MB lấy điểm D sao cho MD = MB a chứng minh tam giác ABM bằng tam giác CD m b Chứng minh AB = CD c Gọi N là trung điểm của BC kéo dài BC cắt AC tại E Chứng minh C là trung điểm của De D trên tia đối tia CA lấy F sao cho CF = cm Gọi O là trung điểm của m chứng minh b o F thẳng hàng
Bài 4. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm MD = MB Chứng minh rằng: a) AB = CD và AC vuông góc với CD b) AD = BC và AD //BC c)góc ABM > góc ACM
Cho tam giác ABC có A < 90 độ và AB < BC. Gọi M là trung điểm của AC, trên tia đối của tia MBlấy điểm D sao cho MD = MB.1) Chứng minh ΔABM = ΔCDM từ đó chứng minh AB=CD và AB // DC.2) Chứng minh : ABC = ADC.3) Kẻ AH ⊥ BD tại H, CK ⊥ BD tại K. Chứng minh AK = CH.4) Nếu AC = 2AB = 8 cm và BAC = 60 độ . Tính HK.
Ai giúp tớ câu 3,4 với!
Cho tam giác ABC có A < 90 độ và AB < BC. Gọi M là trung điểm của AC, trên tia đối của tia MBlấy điểm D sao cho MD = MB.1) Chứng minh ΔABM = ΔCDM từ đó chứng minh AB=CD và AB // DC.2) Chứng minh : ABC = ADC.3) Kẻ AH ⊥ BD tại H, CK ⊥ BD tại K. Chứng minh AK = CH.4) Nếu AC = 2AB = 8 cm và BAC = 60 độ . Tính HK.
Bài 1: Cho ΔABC có M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MD=MB
a) Chứng minh ΔAMB = ΔCMD
b) Chứng minh: AB//CD; AB=CD
c) Kẻ AH ⊥ BD tại H; CK ⊥ BD tại K. Chứng minh M là trung điểm của HK
d) Lấy P là trung điểm của AB. Chứng minh PM =\(\dfrac{1}{2}\) BC
* Các bạn vẽ cả hình ra giúp mình ạ, mình cảm ơn!!!