cho đường tròn (O) đường kính EF, D là điểm di chuyển trên đường tròn (O) (D khác E và F). kẻ DK vuông góc với EF tại K(K thuộc EF). gọi M là hình chiếu vuông góc của K lên DE. Gọi N là hình chiếu vuông góc của K lên DF
Nhờ vẽ hình
cho đường tròn (O) đường kính EF, D là điểm di chuyển trên đường tròn (O) (D khác E và F). kẻ DK vuông góc với EF tại K(K thuộc EF). gọi M là hình chiếu vuông góc của K lên DE. Gọi N là hình chiếu vuông góc của K lên DF
a.cm tứ giác EMNF nội tiếp
b.cm DM.DE=DN.DF
Cho đường tròn (O) đường kính EF, D là điểm di chuyển trên đường tròn (O) (D khác E và F). Kẻ DK vuông góc với EF tại K (K thuộc EF). Gọi M là hình chiếu vuông góc của K lên DE. Gọi N là hình chiếu vuông góc của K lên DF.
a. Chứng minh tứ giác EMNF nội tiếp
b. Chứng minh DM.DE = DN.DF
c. Tìm vị trí của điểm D sao cho bán kính đường tròn ngoại tiếp tam giác EFM đạt giá trị lớn nhất.
Cho đường tròn (O) đường kính EF, D là điểm di chuyển trên đường tròn (O) (D khác E và F). Kẻ DK vuông góc với EF tại K (K thuộc EF). Gọi M là hình chiếu vuông góc của K lên DE. Gọi N là hình chiếu vuông góc của K lên DF.
a. Chứng minh tứ giác EMNF nội tiếp
cho tam giác DEF vuông tại D (DE>DF),đường cao DH=2,4cm.cạnh huyền EF=5cm.tính DE,DF?
Câu 1: cho đường tròn ( O;R ) đường kính EF. Lấy điểm D nằm ngoài đường tròn sao cho các đoạn DE,DF cắt đường tròn ( O) thứ tự tại N và M. Gọi H là giao điểm của EM và FN
a, chứng minh: tam giác EMF là tam giác vuông
b, chứng minh: DH vuông góc EF
c, gọi K là giao điểm của DH và EF, I là giao điểm của DH và MN. chứng minh HI.DK = HK.DI
cho Δ ABC vuông tại A đường cao AH. biết BC=2\(\sqrt{29}\) cm,tanB=\(\dfrac{5}{2}\)
a) Độ dài các cạnh AB, AC
b) Gọi M là trung điểm của đoạn BC, tính sin ∠AMB
Cho đường tròn O và điểm A nằm ngoài đường tròn. Vẽ tiếp tuyến AB, AC. AO cắt BC tại M
a) c/m AO⊥BC
b) vẽ đường kính BE và AE cắt đường tròn tại F. Gọi G là trung điểm của EF, OG cắt BC tại H. c/m OM.OH= OH.OG
c/ C/m EH là tiếp tuyến của đường tròn tâm O
Cho đường tròn (O) đường kính AC, điểm B nằm giữa hai điểm O và C. Vẽ đường tròn tâm O’ đường kính BC. Gọi M là trung điểm của đoạn thẳng AB. Từ M vẽ dây cung DE của đường tròn (O) vuông góc với AB; DC cắt đường tròn tâm O’ tại I. Chứng minh:
1. Tứ giác ADBE là hình thoi.
2. Tứ giác DMBI nội tiếp đường tròn (4 điểm D, M, B, I nằm trên cùng một đường tròn).
3. MC.DB = MI.DC.
4. MI là tiếp tuyến của đường tròn (O’).