a: \(M\in BC\subset\left(SBC\right);M\in\left(SOM\right)\)
Do đó: \(M\in\left(SBC\right)\cap\left(SOM\right)\)
mà \(S\in\left(SBC\right)\cap\left(SOM\right)\)
nên (SBC) giao (SOM)=SM
b: \(N\in CD\subset\left(SCD\right);N\in\left(SAN\right)\)
Do đó: \(N\in\left(SCD\right)\cap\left(SAN\right)\)
mà \(S\in\left(SCD\right)\cap\left(SAN\right)\)
nên \(\left(SCD\right)\cap\left(SAN\right)=SN\)
c: \(M\in BC\subset\left(SBC\right);M\in\left(SAM\right)\)
Do đó: \(M\in\left(SBC\right)\cap\left(SAM\right)\)
mà S thuộc (SBC) giao (SAM)
nên (SBC) giao (SAM)=SM
d: Trong mp(ABCD), gọi E là giao của AM với BD
\(E\in AM\subset\left(SAM\right);E\in BD\subset\left(SBD\right)\)
Do đó: E thuộc (SAM) giao (SBD)
mà S thuộc (SAM) giao (SBD)
nên (SAM) giao (SBD)=SE
e: Gọi F là giao của AN với BD trong mp(ABCD)
\(F\in AN\subset\left(SAN\right);F\in BD\subset\left(SBD\right)\)
=>F thuộc (SAN) giao (SBD)
mà S thuộc (SAN) giao (SBD)
nên (SAN) giao (SBD)=SF
f: \(CD\subset\left(SCD\right);CD\subset\left(ABCD\right)\)
Do đó: (SCD) giao (ABCD)=CD