Cho C=\(\frac{a^2+\sqrt{a}}{a+\sqrt{a}+1}+\frac{1-2a+\sqrt{a}}{\sqrt{a}}\)với a>0
a) Rút gọn
b) Tìm a để C =2
c)Tìm GTNN của C
d) Tìm a để C<0
e) Cho a>1. CMNR: C-|C|=0
Cho biểu thức: \(P=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\) , với a > 0.
a, Rút gọn P
b, Tìm các giá trị của a để P = 2.
c, Tìm GTNN của P.
Cho biểu thức : \(P=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\left(a>0\right)\)
a, Rút gọn biểu thức P
b, Tìm giá trị của a để P = 2
c, Tìm GTNN của P
d, Với P > 0. So sánh P với \(\sqrt{P}\)
Cho \(B=\left(1+\dfrac{\sqrt{a}}{a+1}\right):\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
a, Rút gọn B
b, Tìm a để B<1
c, Cho \(a=19-8\sqrt{3}\). Tính B
d, Tìm a ∈ Z để b ∈ Z
e, Tìm giá trị lớn nhất của M
Cho B=\(\left(\sqrt{a}+\frac{c-\sqrt{ac}}{\sqrt{a}+\sqrt{c}}\right)-\frac{1}{\frac{a}{\sqrt{ac}+c}+\frac{c}{\sqrt{ac}-a}-\frac{a+c}{\sqrt{ac}}}\)
a) Rút gọn.
b) Tính B khi c=54, a=24.
c) Với giá trị nào của a và c để B>0; B<0.
Ôn tập Bất đẳng thức
1 , Cho a,b,c<3 thỏa mãn abc(a+b+c)=3 . Tìm GTNN của C= \(\frac{a}{\sqrt{9-b^2}}+\frac{b}{\sqrt{9-c^2}}+\frac{c}{\sqrt{9-a^2}}\)
2, Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Chứng minh a, \(\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\le1\)
b, \(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge a+b+c\)
3, Cho a,b,c >0 và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)
Tính GTLN của P= \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ca+2a^2}}\)
4 , Cho a,b,c>0 và \(ab+bc+ca\ge a+b+c\)
Chứng minh \(\frac{a^2}{\sqrt{a^3+8}}+\frac{b^2}{\sqrt{b^3+8}}+\frac{c^2}{\sqrt{c^3+8}}\ge1\)
Cho biểu thức: \(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\) \(:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) \(\left(x>0,y>0\right)\)
a, Rút gọn A
b,Biết \(xy=16\) . Tìm các giá trị của xy để A có GTNN. Tìm GTNN đó.
\(C=\left(\frac{2+\sqrt{a}}{2-\sqrt{a}}-\frac{2-\sqrt{a}}{2+\sqrt{a}}-\frac{4a}{a-4}\right):\left(\frac{2}{2-\sqrt{a}}-\frac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\)
a) Rút gọn
b) Tìm giá trị của a để C > 0
c) Tìm giá trị của a để C = -1
Cho biểu thức \(A=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}}{a-\sqrt{a}}\right):\frac{\sqrt{a}+1}{a-1}\) với a > 0, \(a\ne1\)
a, Rút gọn biểu thức A.
b,Tìm các giá trị của a để A < 0.