Ta có:
x,y,z tỉ lệ với 3; 4; 5
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=n\) (n>0)
\(\Rightarrow\left\{{}\begin{matrix}x=3n\\y=4n\\z=5n\end{matrix}\right.\)\(\Rightarrow x+y+z=3n+4n+5n=12n\)
a, b, c tỉ lệ với 4; 5; 6
\(\Rightarrow\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=m\) (m>0)
\(\Rightarrow\left\{{}\begin{matrix}a=4m\\b=5m\\c=6m\end{matrix}\right.\)\(\Rightarrow a+b+c=4m+5m+6m=15m\)
Mà \(x+y+z=a+b+c\)
\(\Rightarrow12n=15m\Rightarrow4n=5m\)
\(\Rightarrow n=\frac{5}{4}m\)
\(\Rightarrow\left\{{}\begin{matrix}x=3n=3.\frac{5}{4}m=\frac{15}{4}m\\y=4n=4.\frac{5}{4}m=5m\\z=5n=5.\frac{5}{4}m=\frac{25}{4}m\end{matrix}\right.\)
Ta có:
\(\left\{{}\begin{matrix}a=4m\\x=\frac{15}{4}m=3,75m\end{matrix}\right.\)mà m>0 nên \(a>x\left(đpcm\right)\)
\(\left\{{}\begin{matrix}b=5m\\y=5m\end{matrix}\right.\)\(\Rightarrow y=b\left(đpcm\right)\)
\(\left\{{}\begin{matrix}z=\frac{25}{4}m=6,25m\\c=6m\end{matrix}\right.\) mà m>0 nên \(z>c\left(đpcm\right)\)