\(a^2+4b=a^2+4a\Leftrightarrow a^2-b^2+4b-4a=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-4\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-4\right)=0\)
\(\Rightarrow a+b-4=0\Rightarrow a+b=4\)
b/ \(Q=a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=4^3-12ab=64-12ab\)
Lại có: \(\left\{{}\begin{matrix}a^2+4b=7\\b^2+4a=7\end{matrix}\right.\) \(\Rightarrow a^2+b^2+4\left(a+b\right)=14\)
\(\Rightarrow\left(a+b\right)^2-2ab+4\left(a+b\right)=14\)
\(\Rightarrow16-2ab+16=14\Rightarrow ab=9\)
\(\Rightarrow Q=64-12.8=-32\)