Vì \(a+2b+2c=6\)
\(\Rightarrow2\left(b+c\right)=6-a\Leftrightarrow b+c=\frac{6-a}{2}\)
Thay vào A:
\(A=ab+ac+2bc=a\left(b+c\right)+2bc\)
\(\le a\left(b+c\right)+\frac{\left(b+c\right)^2}{2}=\frac{a\left(6-a\right)}{2}+\frac{\left(\frac{6-a}{2}\right)^2}{2}\)
\(=\frac{-3a^2+12a+36}{8}=\frac{-3\left(a^2-4a+4\right)+48}{8}=\frac{-3\left(a-2\right)^2}{8}+6\le6\)
Vậy GTLN của A = 6 khi a = 2; b = c = 1