Ta có \(a^3+b^3+c^3=3abc\)
=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Mà \(a+b+c\ne0\)
=> \(a^2+b^2+c^2-ab-bc-ac=0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Do \(VT\ge0\)
=> a=b=c
Thay vào ta được
P=2018^3
Đúng 0
Bình luận (0)