Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Linh Chi

Cho các số thực a, b, c \(\ne\) 0 và đồng thời thỏa mãn:

\(\left\{{}\begin{matrix}a+b+c\ne0\\a^3+b^3+c^3=3abc\end{matrix}\right.\)

Tính giá trị của biểu thức: \(P=\left(2017+\frac{a}{b}\right)\left(2017+\frac{b}{c}\right)\left(2017+\frac{c}{a}\right)\)

Trần Phúc Khang
3 tháng 7 2019 lúc 19:41

Ta có \(a^3+b^3+c^3=3abc\)

=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(a+b+c\ne0\)

=> \(a^2+b^2+c^2-ab-bc-ac=0\)

<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Do \(VT\ge0\)

=> a=b=c

Thay vào ta được

P=2018^3