Hình như đề bn bị sai: cần chứng minh bất đẳng thức \(\ge2\)
Ta có: \(A=\sqrt{\dfrac{x}{y+z}}+\sqrt{\dfrac{y}{x+z}}+\sqrt{\dfrac{z}{x+y}}\)
\(A=\dfrac{\sqrt{x}}{\sqrt{y+z}}+\dfrac{\sqrt{y}}{\sqrt{x+z}}+\dfrac{\sqrt{z}}{\sqrt{x+y}}\)
\(A=\dfrac{x}{\sqrt{(y+z)x}}+\dfrac{y}{\sqrt{\left(x+z\right).y}}+\dfrac{z}{\sqrt{\left(x+y\right).z}}\ge\)
\(\ge\dfrac{x}{\dfrac{x+y+z}{2}}+\dfrac{y}{\dfrac{x+y+z}{2}}+\dfrac{z}{\dfrac{x+y+z}{2}}\)
\(=\dfrac{2\left(x+y+z\right)}{x+y+z}\Leftrightarrow A\ge2\)