Cho các số thực dương a, b, c thỏa mãn \(a^2+b^2+c^2+abc=4\). Tìm GTNN của biểu thức \(P=\dfrac{ab}{a+2b}+\dfrac{bc}{b+2c}+\dfrac{ca}{c+2a}\)
Cho các số dương a,b,c thỏa mãn a+b+c=2. Tìm GTLN của biểu thức:
Q = \(\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\)
Cho a,b,c là các số thực không âm thỏa mãn:a+2b+3c=4.CMR:\(\left(a^2b+b^2c+c^2a+abc\right)\left(ab^2+bc^2+ca^2+abc\right)\)≤8
Cho 3 số thực dương a;b;c. Chứng minh:
\(\dfrac{2a^3}{a^6+bc}+\dfrac{2b^3}{b^6+ca}+\dfrac{2c^3}{c^6+ab}\le\dfrac{a}{bc}+\dfrac{b}{ca}+\dfrac{c}{ab}\)
Bài 1: Cho a,b,c là những số dương thỏa mãn: a+b+c=3
CMR: \(\dfrac{a^2}{a+2b^3}+\dfrac{b^2}{b+2c^3}+\dfrac{c^2}{c+2a^3}\ge1\)
Bài 2: Cho a, b, c thỏa mãn: ab+bc+ca=3
CMR: \(\dfrac{a}{2b^3+1}+\dfrac{b}{2c^3+1}+\dfrac{c}{2a^3+1}\ge1\)
Bài 3: Cho a, b, c > 0. CMR: \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+3b\)
Dấu = xảy ra khi a=b=2c
Cho a,b,c >0 và abc = 1.
Tìm GTNN của P=\(\dfrac{bc}{a^2b+a^2c}+\dfrac{ac}{b^2a+b^2c}+\dfrac{ab}{c^2a+c^2b}\)
a, Cho x,y,z là các số dương. Chứng minh rằng: x7 + y7 > x3y3(x+y)
b, Cho a,b,c là các số dương thỏa mãn abc = 1. Chứng minh rằng :
\(\frac{a^2b^2}{a^7+a^2b^2+b^7}+\frac{b^2c^2}{b^7+b^2c^2+c^7}+\frac{c^2a^2}{c^7+c^2a^2+a^7}\)< 1
Bài 1: Cho các số thực a, b, c thoả mãn \(\left(a+b+c\right)\left(ab+bc+ca\right)=2018\) và \(abc=2018\). Tính giá trị của biểu thức \(P=\left(b^2c+2018\right)\left(c^2a+2018\right)\left(a^2b+2018\right)\)
Cho các số thực a, b, c thỏa mãn: \(\left(a+b+c\right)\left(ab+bc+ca\right)=2018\) và \(abc=2018\)
Tính giá trị biểu thức \(A=\left(b^2c+2018\right)\left(c^2a+2018\right)\left(a^2b+2018\right)\)