Bổ sung ĐK không âm nha bạn
Áp dụng BĐT Cô - Si : x2 + y2 ≥ 2xy ( x > 0 ; y > 0)
Ta có :
a2 + b2 ≥ 2ab ( a > 0 ; b > 0) ( 1 )
b2 + c2 ≥ 2bc ( b > 0 ; c > 0) ( 2)
c2 + a2 ≥ 2ac ( c > 0 ; a > 0) ( 3 )
Cộng từng vế của ( 1 ; 2 ; 3 ) , ta có :
2( a2 + b2 + c2 ) ≥ 2( ab + bc + ac)
⇔ 3( a2 + b2 + c2) ≥ a2 + b2 + c2 + 2ab + 2bc + 2ac
⇔ a2 + b2 + c2 ≥ \(\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{\left(\dfrac{3}{2}\right)^2}{3}=\dfrac{9}{\dfrac{4}{3}}=\dfrac{3}{4}\)
Dấu " = " xảy ra khi : a = b = c = \(\dfrac{1}{2}\)