\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{ab+bc+ca}{abc}=0\Rightarrow ab+bc+ca=0\)
\(a+b+c=1\Rightarrow\left(a+b+c\right)^2=1\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=1\)
\(\Rightarrow a^2+b^2+c^2=1\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{ab+bc+ca}{abc}=0\Rightarrow ab+bc+ca=0\)
\(a+b+c=1\Rightarrow\left(a+b+c\right)^2=1\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=1\)
\(\Rightarrow a^2+b^2+c^2=1\)
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
Cho a, b, c là các số thực dương thỏa mãn \(a^2+b^2+c^2=1\). Chứng minh rằng: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{c^2+a^2}+\dfrac{1}{a^2+b^2}\le\dfrac{a^3+b^3+c^3}{2abc}+3\)
Mọi người giúp em với ạ, chiều em phải nộp rồi ạ T.T
Chứng minh rằng: Nếu 3 số thực a, b, c thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\) thì trong 3 số đó luôn tồn tại 2 số đối nhau
1.Giải phương trình sau: [x-2015] + [2x-2016]= x-2017
2. Cho ba số thực a,b,c khác nhau thỏa mãn: \(a+\frac{2020}{b}=b+\frac{2020}{c}=c+\frac{2020}{a}\). Chứng minh rằng \(a^2+b^2+c^2=2020^3\)
3. Cho a,b,c là số dương thỏa mãn a+b+c=9. Chứng minh: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)
4. Chứng minh bất đẳng thức sau vớ a,b,c là các số dương: \(\left(a+b+c\right)\times\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
5. Cho a >0, b >0, c >0. Chứng minh rằng: \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)
Cho a,b,c≠0 thỏa mán a+b+c=0.Chứng minh rằng:
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=1
Chứng minh rằng : \(P=\dfrac{1}{\left(a+1\right)^2}+\dfrac{1}{\left(b+1\right)^2}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{2}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge1\)
Cho a,b,c là các số hữu tỉ khác 0 thỏa mãn a+b+c=0.
Chứng minh rằng M=\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\) là bình phương của một số hữu tỉ.
Cho các số a, b, c khác 0 thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
Tính \(S=\dfrac{2013a^2-2014}{a^2+2bc}+\dfrac{2013b^2-2014}{b^2+2ca}+\dfrac{2013c^2-2014}{c^2+2ab}\)
cho a,b,c dương thỏa mãn ab+bc+ca=1. Chứng minh a-b/1+c^2 + b-c/1+a^2 + c-a/1+b^2 = 0