Đặt \(t=\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow x=at,y=bt,z=ct\)
\(\dfrac{bz-cy}{a}=\dfrac{bct-bct}{a}=0\), tương tự ta có: \(\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}=0\)
Do đó \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)
Đặt \(t=\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow x=at,y=bt,z=ct\)
\(\dfrac{bz-cy}{a}=\dfrac{bct-bct}{a}=0\), tương tự ta có: \(\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}=0\)
Do đó \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)
Cho các số a, b, c, x, y, z thõa mản điều kiện \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) . CMR:
\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)
Cho \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\).CMR \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
cho a,b,c,x,y,z là các số thực khác 0 thỏa mãn: \(\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}\). CMR: \(\dfrac{a^2-bc}{x}=\dfrac{b^2-ca}{y}=\dfrac{c^2-ab}{z}\)
1. Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) và a + b + c khác 0 biết a = 2018 . Tìm b và c
2. Cho x , y , z thỏa mãn \(\dfrac{x+y+1}{x}=\dfrac{x+y+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\) . Tìm x , y ,z
biet \(\dfrac{b\cdot z-x\cdot y}{a}=\dfrac{c\cdot x-a\cdot z}{b}=\dfrac{a\cdot y-b\cdot x}{c}\)
CM , \(\dfrac{a}{b}=\dfrac{b}{y}=\dfrac{c}{z}\)
Nếu \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\left(1\right)\)
Trong đó a, b, c là các số khác nhau và khác 0 thì: \(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)(*)
Cho a,b,c là các số thực thỏa mãn : a + b+c = 1; a2+ b2 +c2 =1 và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\). CMR:
xy+y.z+z.x =0
cho x,y,z khác 0 thỏa mãn: \(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\). CMR: ( x+y+z ). \(\left(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\right)\)
tính x, y, z biết
a) \(\dfrac{x}{2}=\dfrac{y}{3},\dfrac{y}{5}=\dfrac{z}{7}\), x + y + z = 92
b) 2x = 3y = 5z, x + y - z = 95
c) \(\dfrac{x}{y+x+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\)