Cho hai biểu thức: \(A=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\); \(B=\frac{\sqrt{x}-3}{\sqrt{x}+1}\) với \(x\ge0;x\ne9\)
a) Tính giá trị của biểu thức B tại x=25
b) Rút gọn biểu thức A
c) Tìm giá trị nhỏ nhất của biểu thức: P=A.B+1
Bài 1: Cho biểu thức:
\(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2-1+a}}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\left(0< a< 1\right)\)
a) Rút gọn Q
b) So sánh Q và Q3
Bài 2: Cho biểu thức:
\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\left(x\ge0;x\ne25\right)\)
a) Rút gọn P. Tìm các số thực để P > -2
b) Tìm các số tự nhiên x là số chính phương sao cho P là số nguyên
Bài 3: Cho biêu thực:
\(P=\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}+\frac{x^2+\sqrt{x}}{x\sqrt{x}+x}\left(0< x\ne1\right)\)
a) Rút gọn P
b) Tính giá trị của biểu thức P khi x = \(3-2\sqrt{x}\)
c) Chứng minh rằng với mọi giá trị của x để biểu thức P có nghĩa thì biểu thức \(\frac{7}{P}\) chỉ nhận một giá trị nguyên.
Cho biểu thức \(A=\frac{\sqrt{x}-2}{x+\sqrt{x}+1}\)và \(B=\frac{x+2}{x\sqrt{x-1}}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\) với\(x\ge0,x\ne1\)
Tìm giá trị lớn nhất của m để bất phương trình\(\frac{B}{A}\ge m\\ \) luôn đúng với mọi giá trị nguyên của x thỏa mãn điều kiện đề bài
Cho biểu thức :\(A=\frac{\sqrt{x}}{1+\sqrt{x}}\) và \(B=\frac{\sqrt{x}-1}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}-\frac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
(với \(x\ge0;x\ne9;x\ne4\) )
1, Tính giá trị biểu thức A khi \(x=3-2\sqrt{2}\)
2, Rút gọn biểu thức B
3, Tìm giá trị nhỏ nhất của biểu thức P=A:B
Cho biểu thức M=\(\left(\frac{x-\sqrt{x}+2}{x-1}-\frac{1}{\sqrt{x}-1}\right).\frac{x+2\sqrt{x}+1}{2x-2\sqrt{x}}\)với x>0, x khác 1
a) Rút gọn M
b) Tính giá trị của a để phương trình M = a có nghiệm
c) Tìm x để \(\frac{1}{M}-\frac{\sqrt{x}-1}{8}\ge1\)
Cho hai biểu thức \(A=\frac{\sqrt{x}+2}{\sqrt{x}-5}\) và \(B=\frac{3}{\sqrt{x}+5}+\frac{20-2\sqrt{2}}{x-25}\) , với \(x\ge0,x\ne25\)
1) Tính A khi \(x=9\)
2) CM: \(B=\frac{1}{\sqrt{x}-5}\)
3) Tìm tất cả giá trị nguyên x để \(A=B\cdot\left(\frac{x-4\sqrt{x}-5}{x+1}\right)\)
Cho biểu thức: \(B=\left(1-\frac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\) với \(x\ge0;x\ne4;9\)
a, Rút gọn biểu thức B
b, Tìm x để B < 0
c, Tìm GTNN của B
cho \(A=\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\) và \(B=\frac{1}{\sqrt{x}-1}-\frac{x+2}{x\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\left(x\ge0,x\ne1\right)\)
a) Tính giá trị biểu thức A khi x = 2
b) Rút gọn biểu thức B
c) Tìm x sao cho biểu thức C = -A.B nhận giá trị nguyên
Cho biểu thức: \(A=\left(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}+\frac{4}{x-1}\right):\frac{\sqrt{x}+2}{\sqrt{x}-1}\) với \(x\ge0,x\ne1\)
a, Rút gọn A
b, Tìm x để \(A=\frac{1}{2}\)
c, Tìm GTLN của A.