Ta có: \(\left(2018+2017\right)^2>2018^2+2017^2\)
Ta có: \(C=\frac{2018^2-2017^2}{2018^2+2017^2}\)
\(=\frac{\left(2018-2017\right)\left(2018+2017\right)}{2018^2+2017^2}=\frac{2018+2017}{2018^2+2017^2}\)
Ta có: \(D=\frac{2018-2017}{2018+2017}\)
\(=\frac{\left(2018-2017\right)\left(2018+2017\right)}{\left(2018+2017\right)^2}=\frac{2018+2017}{\left(2018+2017\right)^2}\)
Đặt a=2018
b=2017
Ta có: \(\left(2018+2017\right)^2=\left(a+b\right)^2\)
\(2018^2+2017^2=a^2+b^2\)
mà \(\left(2018+2017\right)^2>2018^2+2017^2\)(cmt)
nên \(\left(a+b\right)^2>a^2+b^2\)
\(\Leftrightarrow\frac{a+b}{\left(a+b\right)^2}< \frac{a+b}{a^2+b^2}\)
hay \(\frac{2018+2017}{\left(2018+2017\right)^2}< \frac{2018+2017}{2018^2+2017^2}\)
hay D<C