Ta có
\(A=\left(x^2\right)^3-2\left(x^2\right)^2+1\)
Với x2=5
=> \(A=5^3-2.5^2+1\)
=> \(A=125-50+1\)
=> \(A=76\)
A=x6-2x4+1
=(x2)3-2(x2)2+1
Tại x2=5 thì A=53-2*52+1
=125-50+1=76
\(A=x^6-2x^4+1\)
\(\Rightarrow A=x^2.x^2.x^2-2x^2.x^2+1\)
Thay \(x^2=5\) ta có:
\(A=5.5.5-2.5.5+1\)
\(\Rightarrow A=125-50+1\)
\(\Rightarrow A=76\)
Vậy \(A=76\)
$A=x^6-2x^4+1$
\(\Rightarrow A=\left(x^2\right)^3-2\left(x^2\right)^2+1\)
Khi \(x^2=5\Rightarrow A=5^3-2.5^2+1\)
\(\Rightarrow A=125-50+1\)
\(\Rightarrow A=76\)
Vậy \(A=76\)