1CHO A=x + \(\sqrt{5}\) và B=a - \(\sqrt{5}\)
Tính giá trị biểu thức P=a + b - ab
2Rút gọn biểu thức
B= \(\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right)-\dfrac{x+2\sqrt{x}}{\sqrt{x}}\) (với x>0 và x\(\ne\)4
cho biểu thức P = \(\left(\frac{2x}{x\sqrt{x}-x+\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1+\frac{\sqrt{x}}{x+1}\right)\)với x ≥ 0 và x ≠ 1
a) rút gọn P
b) Tìm x để P =\(\frac{-1}{7}_{ }\)
chứng minh răng :
a,\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\cdot\left(1-\dfrac{a-\sqrt{a}}{a-1}\right)=1-a\left(a>hoaăặc=0,a\right)\left(a#1\right)\)b, \(\dfrac{\sqrt{ab}-b}{\sqrt{b}}-\sqrt{\dfrac{a}{b}}< 0\left(a>hoac=0,b>0\right)\)
\(\left(\sqrt{ab}-\sqrt{\dfrac{a}{b}}+\dfrac{1}{a}\sqrt{4ab}+\dfrac{1}{b}\sqrt{\dfrac{b}{a}}\right):\left(1+\dfrac{2}{a}-\dfrac{1}{b}+\dfrac{1}{ab}\right)\)
Rút gọn ( chi tiết 1 xíu nhá)
chứnng minh rằng :
a, điều kiện : a> hoặc = 0, a#1\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\cdot\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\)
\(A=\left(\dfrac{\sqrt{x}}{1-\sqrt{x}}+\dfrac{\sqrt{x}}{1+\sqrt{x}}\right)+\dfrac{3\sqrt{x}}{x-1}vớix\ge0,x\ne1\)
rút gọn
a) \(\dfrac{2-\sqrt{2}}{1-\sqrt{2}}\)+\(\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\)
b)\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
c)\(\left(\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right)\times\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)\)
d)\(\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}+\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)
B=\(\frac{x}{\sqrt{x}-1}\)-\(\frac{2x-\sqrt{x}}{x-\sqrt{x}}\)
a, rút gọn B
b, tính B khi x=3+\(\sqrt{8}\)
Cho M=\(\dfrac{(\sqrt{1+\sqrt{1-x^2})}(\sqrt{\left(1+x^2\right)}-\sqrt{\left(1-x^2\right)})}{2+\sqrt{1-x^2}}\)
Rút gọn M
\(\dfrac{1-\sqrt{2}}{2\sqrt{3}-3\sqrt{2}}\)Sao bước này lại ra bước này được vậy
\(=\dfrac{\left(1-\sqrt{2}\right)\left(2\sqrt{3}-3\sqrt{2}\right)}{12-18}\)
Chủ yếu mình hỏi là sao ra 12-18 đáng lẽ là \(\sqrt{12}-\sqrt{18}\) chứ