a) \(ĐKXĐ:x\ne\pm3;x\ne-6\)
Với \(x\ne\pm3;x\ne-6\), ta có:
\(P=\left(\dfrac{x}{x-3}-\dfrac{2}{x+3}+\dfrac{x^2}{9-x^2}\right):\dfrac{x+6}{3x+9}\\ =\left(\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2}{\left(x+3\right)\left(x-3\right)}\right)\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{x^2+3x-2x+6-x^2}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{x+6}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{3}{x-3}\)
Vậy \(P=\dfrac{3}{x-3}\) với \(x\ne\pm3;x\ne-6\)
b) Ta có: \(2x-\left|4-x\right|=5\)
+) Nếu \(x\le4\Leftrightarrow2x-\left(4-x\right)=5\)
\(\Leftrightarrow2x-4+x=5\\ \Leftrightarrow3x=9\\ \Leftrightarrow x=3\left(Tm\right)\)
+) Nếu \(x>4\Leftrightarrow2x-\left(x-4\right)=5\)
\(\Leftrightarrow2x-x+4=5\\ \Leftrightarrow x=1\left(Ktm\right)\)
Với \(x\ne\pm3;x\ne-6\)
Khi \(x=3\left(Ktm\right)\rightarrow\text{loại}\)
Vậy khi \(2x-\left|4-x\right|=5\) không có giá trị.
c) Với \(x\ne\pm3;x\ne-6\)
Để P nhận giá trị nguyên
thì \(\Rightarrow\dfrac{3}{x-3}\in Z\)
\(\Rightarrow3⋮x-3\\ \Rightarrow x-3\inƯ_{\left(3\right)}\)
Mà \(Ư_{\left(3\right)}=\left\{\pm1;\pm3\right\}\)
Lập bảng giá trị:
\(x-3\) | \(-3\) | \(-1\) | \(1\) | \(3\) |
\(x\) | \(0\left(TM\right)\) | \(2\left(TM\right)\) | \(4\left(TM\right)\) | \(6\left(KTM\right)\) |
Vậy để P nhận giá trị nguyên
thì \(x\in\left\{0;2;4\right\}\)
d) Với \(x\ne\pm3;x\ne-6\)
Ta có : \(P^2-P+1=\dfrac{9}{\left(x-3\right)^2}-\dfrac{3}{x-3}+1\)
Đặt \(\dfrac{3}{x-3}=y\)
\(\Rightarrow P^2-P+1=y^2-y+1\\ =y^2-y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Do \(\left(y-\dfrac{1}{2}\right)^2\ge0\forall y\)
\(\Rightarrow P^2-P+1=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall y\)
Dấu "=" xảy ra khi:
\(\left(y-\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow y-\dfrac{1}{2}=0\\ \Leftrightarrow y=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{3}{x-3}=\dfrac{1}{2}\\ \Leftrightarrow x-3=6\\ \Leftrightarrow x=9\left(TM\right)\)
Vậy \(GTNN\) của biểu thức là \(\dfrac{3}{4}\) khi \(x=9\)