a)
* Để P xác định \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne0\\\sqrt{x}+1\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne1\\\sqrt{x}\ne-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
* P = \(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)\(=\sqrt{x}-1+\sqrt{x}\) = \(2\sqrt{x}-1\)
b) Thay x = \(6-2\sqrt{5}\) vào P
=> P = 2.\(\sqrt{6-2\sqrt{5}}\) - 1 = 2. (\(\sqrt{5}-1\)) - 1 = \(2\sqrt{5}-3\)
c) P = \(2\sqrt{x}-1\) = 3
\(\Leftrightarrow\) \(2\sqrt{x}=4\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)