Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Võ Thị Kim Dung

Cho biểu thức \(P=\dfrac{2a+b}{3a-b}.\) Với a > b > 0 và \(2\left(a^2+b^2\right)=5ab\) thì P =

Võ Đông Anh Tuấn
10 tháng 9 2017 lúc 10:38

Ta có : \(2\left(a^2+b^2\right)=5ab\)

\(\Leftrightarrow2a^2+2b^2=5ab\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)

\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow a=2b\) ( vì \(a>b>0\) )

Thay vào viểu thức P, ta có :

\(P=\dfrac{2.2b+b}{3.2b-b}=1\)