Bài tập cuối chương 3

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Cho biểu thức: \(N=\dfrac{x\sqrt{x}+8}{x-4}-\dfrac{x+4}{\sqrt{x}-2}\) với x ≥ 0, x ≠ 4.

a) Rút gọn biểu thức N.

b) Tính giá trị của biểu thức tại x = 9.

datcoder
30 tháng 9 lúc 22:35

a. \(N = \frac{{x\sqrt x  + 8}}{{x - 4}} - \frac{{x + 4}}{{\sqrt x  - 2}}\)

\(\begin{array}{l} = \frac{{\sqrt {x^3}  + 2^3}}{{x - 4}} - \frac{{x + 4}}{{\sqrt x  - 2}}\\ = \frac{\left(\sqrt x + 2\right)\left(x - 2\sqrt x+4\right)}{\left(\sqrt x - 2\right) \left(\sqrt x + 2\right)} - \frac{{x + 4}}{{\sqrt x  - 2}}\\ = \frac{x - 2\sqrt x + 4}{\sqrt x  - 2} - \frac{{x + 4}}{{\sqrt x  - 2}}\\ = \frac{x - 2\sqrt x + 4 - x - 4}{\sqrt x  - 2}\\ = \frac{{ - 2\sqrt x }}{{\sqrt x  - 2}}\end{array}\).

b. Thay \(x = 9\) vào biểu thức, ta được:

\(N = \frac{{ - 2\sqrt 9 }}{{\sqrt 9  - 2}} = \frac{{ - 2.3}}{{3 - 2}} =  - 6\).