a: \(N=\dfrac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}:\left(\dfrac{\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)-x\sqrt{x}+y\sqrt{y}}{x-y}\right)\)
\(=\dfrac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}:\dfrac{x\sqrt{x}+x\sqrt{y}-y\sqrt{x}-y\sqrt{y}-x\sqrt{x}+y\sqrt{y}}{x-y}\)
\(=\dfrac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{x-y}{x\sqrt{y}-y\sqrt{x}}\)
\(=\dfrac{x-\sqrt{xy}+y}{1}\cdot\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}\)
\(=\dfrac{x-\sqrt{xy}+y}{\sqrt{xy}}\)
b: \(N-1=\dfrac{x-2\sqrt{xy}+y}{\sqrt{xy}}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{xy}}>0\)
=>N>1
Đúng 0
Bình luận (0)