a,
b, \(\dfrac{a+5}{a+3}=\dfrac{2}{5}\Leftrightarrow\left(a+5\right)5=\left(a+3\right)2\Leftrightarrow5a+25=2a+6\)
\(\Rightarrow5a-2a=-25+6\Leftrightarrow3a=-19\Leftrightarrow a=-\dfrac{19}{3}\)
c, thay vào tính thôi
d, \(B=\dfrac{a+5}{a+3}=\dfrac{a+3+2}{a+3}=1+\dfrac{2}{a+3}\)
Vì 1 là số nguyên nên để B nguyên khi:
\(a+3\in\left\{+1;-1;+2;-2\right\}\)
\(\Rightarrow a\in\left\{-2;-4;-1;-5\right\}\)
e, Ta có B < 0, khi
\(\Rightarrow\left[{}\begin{matrix}a+5< 0\\a+3< 0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a< -5\\a< -3\end{matrix}\right.\)
Vậy B < 0; khi a < -3