Do a < b < c < d < m < n
=> 2c < c + d
m< n => 2m < m+ n
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n)
Do đó :
(a + c + m)/(a + b + c + d + m + n) < 1/2(đcpcm)
Do a < b < c < d < m < n
=> 2c < c + d
m< n => 2m < m+ n
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n)
Do đó :
(a + c + m)/(a + b + c + d + m + n) < 1/2(đcpcm)
Cho a, b, c là 3 số thực dương thỏa mãn \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Tính giá trị của biểu thức M = \(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)
Cho hai phân số \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\) thỏa mãn b, d > 0 và \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\). Chứng minh rằng \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Giả sử m và n là các số nguyên sao cho:\(\dfrac{m}{n}=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...-\dfrac{1}{1334}+\dfrac{1}{1335}\) .Chứng minh rằng m chia hết cho 2003
Bài 1: Cho 4 số a,b,c,d thỏa mãn \(b^2=ac;c^2=bd\\ \) . Chứng minh \(\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
Bài 2 : Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh
a) \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
b) \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
Bài 3 : CMR : Nếu a(y+z)=b(z+x)=c(x+y) trong đó a,b,c là các số thực khác nhau thì \(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)
Bài 4 : Cho \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\). Chứng minh \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
Bài 5 : CMR : Nếu \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\) thì \(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)
Cho ba số a, b, c thỏa mãn: b ≠ c và a + b ≠ c và c2 = 2(ac + bc - ab)
Chứng minh rằng: \(\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\dfrac{a-c}{b-c}\)
Cho các số thực a,b,c,d,e thỏa mãn \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\)chứng minh rằng: \(\left(\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\right)=\dfrac{a^2}{b.c}\)
Bài 1: Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh
a) \(\dfrac{a+c}{c}=\dfrac{b+d}{d}\)
b) \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
c) \(\dfrac{a-c}{a}=\dfrac{b-d}{b}\)
d) \(\dfrac{3a+5b}{2a-7b}=\dfrac{3c+5d}{2c-7d}\)
e) \(\dfrac{\left(a+b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)
f) \(\left(\dfrac{a-b}{c-d}\right)^{2012}=\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}\)
Bài 2: Tìm x, biết
a) \(\dfrac{3}{x-4}=\dfrac{x+4}{3}\)
b) \(\dfrac{x+2}{2}=\dfrac{1}{1-x}\)
c) \(\dfrac{x+7}{x+4}=\dfrac{x-1}{x-2}\)
Bài 3: Cho tỉ lệ thức \(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\)
Tìm giá trị của tỉ số \(\dfrac{x}{y}\)
cho a;b;c;d là các số thực khác 0 thỏa mãn
\(\dfrac{a-b+c+d}{b}=\dfrac{a+b-c+d}{c}=\dfrac{a+b+c-d}{d}=\dfrac{b+c+d-a}{a}\)
tính giá trị của biểu thức
\(M=\dfrac{\left(a+b+c\right)\left(a+b+d\right)\left(b+c+d\right)\left(c+d+a\right)}{abcd}\)
1/Cho các số hữu tỉ a,b,c thoả mãn điều kiện a > b và b, c > 0 Chứng minh \(\dfrac{a}{b}\)>.\(\dfrac{a+c}{b+c}\)