ĐKXĐ : \(x\ne0,x\ne\pm2\)
Câu a :
\(A=\left(\dfrac{1}{x-2}-\dfrac{2x}{4-x^2}+\dfrac{1}{x+2}\right).\left(\dfrac{2}{x}-1\right)\)
\(=\dfrac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}.\left(\dfrac{2}{x}-1\right)\)
\(=\dfrac{4x}{\left(x-2\right)\left(x+2\right)}\times\dfrac{2-x}{x}\)
\(=-\dfrac{4}{x+2}\)
Câu b :
Ta có : \(2x^2+x=0\Leftrightarrow x\left(2x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Thay \(x=0\) vào A ta được \(-\dfrac{4}{0+2}=-2\)
Thay \(x=-\dfrac{1}{2}\) vào A ta được \(-\dfrac{4}{-\dfrac{1}{2}+2}=-\dfrac{8}{3}\)
Câu c :
Để \(A=\dfrac{1}{2}\) thì \(-\dfrac{4}{x+2}=\dfrac{1}{2}\)
\(\Leftrightarrow x+2=-8\Leftrightarrow x=-10\)
Câu d :
Để A nguyên dương thì \(-4⋮x+2\)
Xét :
\(Ư\left(-4\right)=-4;-2;-1;1;2;4\)
\(\left\{{}\begin{matrix}x+2=-4\\x+2=-2\\x+2=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-6\left(N\right)\\x=-4\left(N\right)\\x=-3\left(N\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+2=1\\x+2=2\\x+2=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\left(N\right)\\x=0\left(L\right)\\x=2\left(L\right)\end{matrix}\right.\)
Vậy có 4 giá trị của x thì A nguyên : \(\left\{{}\begin{matrix}x=-6\\x=-4\\x=-3\\x=-1\end{matrix}\right.\)