Cho biểu thức: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\). Tìm tất cả các giá trị của x để biểu thức A nhận giá trị là 1 số nguyên
Cho biểu thức A=\(\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(1-\frac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)
1) Tìm ĐK XĐ của biểu thức A.
2) Rút gọn A.
3) Tính giá trị của biểu thức A khi \(\frac{1}{6-2\sqrt{5}}\)
4) So sánh A với 1
5) 5) Tìm giá trị của x để giá trị biểu thức A bằng -3.
4) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
6) Tìm giá trị của x để giá trị biểu thức A nhỏ hơn -1.
7)Tìm giá trị của x để A < 2
1.Cho biểu thức A=\(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)
a, rút gọn biểu thức
b, Tìm x để A có giá trị bằng 0
Cho biểu thức \(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\right)\) với \(a>0;a\ne1\) .
a, Rút gọn biểu thức Q.
b, Tìm giá trị của a để Q > 2.
cho biểu thức
Q=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
a. rút gọn biểu thức Q
b.tìm số nguyên x để Q có giá trị nguyên
Bài 1: Cho biểu thức:
\(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2-1+a}}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\left(0< a< 1\right)\)
a) Rút gọn Q
b) So sánh Q và Q3
Bài 2: Cho biểu thức:
\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\left(x\ge0;x\ne25\right)\)
a) Rút gọn P. Tìm các số thực để P > -2
b) Tìm các số tự nhiên x là số chính phương sao cho P là số nguyên
Bài 3: Cho biêu thực:
\(P=\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}+\frac{x^2+\sqrt{x}}{x\sqrt{x}+x}\left(0< x\ne1\right)\)
a) Rút gọn P
b) Tính giá trị của biểu thức P khi x = \(3-2\sqrt{x}\)
c) Chứng minh rằng với mọi giá trị của x để biểu thức P có nghĩa thì biểu thức \(\frac{7}{P}\) chỉ nhận một giá trị nguyên.
Cho biểu thức A = \(\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\)
a) Rút gọn biểu thức A.
b) Tính giá trị của A với a = \(\frac{\sqrt{6}}{2+\sqrt{6}}\)
c) Tìm giá tị của a để \(\sqrt{A}>A\)
Cho biểu thức \(A=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}}{a-\sqrt{a}}\right):\frac{\sqrt{a}+1}{a-1}\) với a > 0, \(a\ne1\)
a, Rút gọn biểu thức A.
b,Tìm các giá trị của a để A < 0.
Cho biểu thức \(\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}-\sqrt{y}}\)
a) Tìm đk để x, y để A có nghĩa
b) Rút gọn A
c) Tính giá trị của A khi \(x=\sqrt{x+2\sqrt{2}}\) và \(y=\sqrt{3-2\sqrt{2}}\)