Ta có A=\(\dfrac{x^2-2x+2011}{x^2}\)\(=\dfrac{2011\left(x^2-2x+2011\right)}{2011x^2}\)
=\(\dfrac{x^2-2.2011x+2011^2+2010x^2}{2011x^2}\)
=\(\dfrac{\left(x-2011\right)^2+2010x^2}{2011x^2}\) =\(\dfrac{\left(x-2011\right)^2}{2011x^2}\) +\(\dfrac{2010}{2011}\)
\(\ge\)\(\dfrac{2010}{2011}\)(vì \(\dfrac{\left(x-2011\right)^2}{2011x^2}\ge0\) )
Dấu "=" xảy ra <=> (x-2011)2 = 0 => x-2011=0
=> x= 2011
Vậy GTNN của A = \(\dfrac{2010}{2011}\) khi x= 2011