a,\(A\) xác định \(\Leftrightarrow\left[{}\begin{matrix}x+1\ne0\\1-x^2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne-1\\x\ne1\end{matrix}\right.\)
Vậy...
b,\(A=\dfrac{x}{x+1}:\dfrac{1-3x^2}{1-x^2}\)
\(=\dfrac{x}{x+1}:\dfrac{-\left(3x^2-1\right)}{-\left(x^2-1\right)}\)
\(=\dfrac{x}{x+1}:\dfrac{3x^2-1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x}{x+1}.\dfrac{\left(x-1\right)\left(x+1\right)}{3x^2-1}\)
\(=\dfrac{x}{1}.\dfrac{x-1}{3x^2-1}\)
\(=\dfrac{x^2-x}{3x^2-1}\)
Câu a :
Để phân thức được xác định thì :
\(\left\{{}\begin{matrix}x+1\ne0\\1-x^2\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne1\end{matrix}\right.\)
Câu b :
\(\dfrac{x}{x+1}:\dfrac{1-3x^2}{1-x^2}\)
\(=\dfrac{x}{x+1}:\dfrac{-\left(1-3x^2\right)}{x^2-1}\)
\(=\dfrac{x}{x+1}:\dfrac{3x^2-1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x}{x+1}\times\dfrac{\left(x-1\right)\left(x+1\right)}{3x^2-1}\)
\(=\dfrac{x\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(3x^2-1\right)}=\dfrac{x\left(x-1\right)}{3x^2-1}\)