ĐK: x>0,x\(\ne4\)
a) Ta thay x=\(\dfrac{1}{4}\) vào \(A=\dfrac{6}{x+2\sqrt{x}}=\dfrac{6}{\dfrac{1}{4}+2\sqrt{\dfrac{1}{4}}}=\dfrac{6}{\dfrac{1}{4}+2.\dfrac{1}{2}}=\dfrac{6}{\dfrac{1}{4}+1}=6:\left(\dfrac{1}{4}+1\right)=6:\dfrac{5}{4}=6.\dfrac{4}{5}=\dfrac{24}{5}=4,8\)B=\(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}=\dfrac{\sqrt{x}}{x-4}-\dfrac{2}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}=\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{6}{\left(2-\sqrt{x}\right)\left(\sqrt{x}+2\right)}=\dfrac{6}{4-x}\)
b) Ta có M=\(\dfrac{A}{B}=A\div B=\dfrac{6}{x+2\sqrt{x}}\div\dfrac{6}{4-x}=\dfrac{6}{x+2\sqrt{x}}.\dfrac{4-x}{6}=\dfrac{4-x}{x+2\sqrt{x}}=\dfrac{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{2-\sqrt{x}}{\sqrt{x}}\)
Ta lại có M>1\(\Leftrightarrow\dfrac{2-\sqrt{x}}{\sqrt{x}}>1\Leftrightarrow2-\sqrt{x}>\sqrt{x}\Leftrightarrow2>2\sqrt{x}\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)
Kết hợp với ĐK
Vậy 0<x<1 thì M>1
c) Ta có M\(=\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{2}{\sqrt{x}}-1\)
Vậy để \(M\in Z\) thì \(\sqrt{x}\inƯ\left(2\right)\in\left\{\pm1;\pm2\right\}\)
Vì \(\sqrt{x}>0\)
Nên \(\sqrt{x}\in\left\{1;2\right\}\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\left(tm\right)\\x=4\left(ktm\right)\end{matrix}\right.\)
Vậy x=1 thì M\(\in Z\)
Nguyễn Việt LâmTrầNguyễn Thị Khánh Như Trương NgọcThảo Vyn Trung NguyênBonkingsaint suppapong udomkaewkanjanaPhạm TiếnKHUÊ VŨMysterious PersonThiên Hàn