Ta có \(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\Leftrightarrow a+b=a-1+2\sqrt{\left(a-1\right)\left(b-1\right)}+b-1\Leftrightarrow2=2\sqrt{\left(a-1\right)\left(b-1\right)}\Leftrightarrow\sqrt{\left(a-1\right)\left(b-1\right)}=1\Leftrightarrow\left(a-1\right)\left(b-1\right)=1\Leftrightarrow ab-a-b+1=1\Leftrightarrow a+b=ab\)Vậy nếu \(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\) thì a+b=ab
\(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\left(a\ge1;b\ge1\right)\\ \Leftrightarrow a+b=a-1+b-1+2\sqrt{\left(a-1\right)\left(b-1\right)}\\ \Leftrightarrow a+b=a+b-2+2\sqrt{\left(a-1\right)\left(b-1\right)}\\ \Leftrightarrow2=2\sqrt{\left(a-1\right)\left(b-1\right)}\\ \Leftrightarrow1=\sqrt{a-1}\sqrt{b-1}\\ \Leftrightarrow1=\left(a-1\right)\left(b-1\right)\\ \Leftrightarrow1=ab-a-b-1\\ \Leftrightarrow ab=a+b\)