ĐKXĐ: \(x\left(x+1\right)\left(x-3\right)\ge0\Rightarrow\left[{}\begin{matrix}-1\le x\le0\\x\ge3\end{matrix}\right.\)
\(\left(x-2\right)\sqrt{x\left(x+1\right)\left(x-3\right)}\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2\le0\\\sqrt{x\left(x+1\right)\left(x-3\right)}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\le2\\x=-1\\x=0\\x=3\end{matrix}\right.\)
Kết hợp với ĐKXĐ ta được: \(\left[{}\begin{matrix}-1\le x\le0\\x=3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x_1=-1\\x_2=3\end{matrix}\right.\) \(\Rightarrow S=5\)