a. Do \(a > b\) nên \(a - b > 0\) và \(b - a < 0\)
Ta có: \(\left( {a + c} \right) - \left( {b + c} \right) = a + c - b - c = a - b > 0\). Vậy \(\left( {a + c} \right) - \left( {b + c} \right) > 0\).
b. Do \(\left( {a + c} \right) - \left( {b + c} \right) > 0\) nên \(a + c > b + c\).
Đúng 0
Bình luận (0)