Cho a,b,c > 0 thỏa mãn \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=3\)
Tìm GTLN của biểu thức: P = \(\frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\)
Cho a,b,c là các số dương thỏa mãn: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=6\). CMR:
a) \(\frac{1}{a+b+2c}+\frac{1}{b+c+2a}+\frac{1}{c+a+2b}\le3\)
b) \(\frac{1}{3a+3b+2c}+\frac{1}{3a+2b+3c}+\frac{1}{2a+3b+2c}\le\frac{3}{2}\)
Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng
\(\frac{1}{a^2+2b+3}+\frac{1}{b^2+2c+3}+\frac{1}{c^2+2a+3}\le\frac{1}{2}\)
Cho các số thực dương a,b,c thoả mãn a+b+c=2016
Tìm GTNN của biểu thức:\(P=\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c-1}{2017+c}\)
a. Tìm các số thực dương a, b, c thỏa mãn \(a\le b\le c\) và \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\). Tìm GTNN của biểu thức: \(P=a+b^{2019}+c^{2020}\)
b. Tìm 3 số nguyên tố p, q, r sao cho \(p^r+p^q\) là 1 số chính phương.
c.Cho 3 số dương a, b,c thỏa mãn abc=1.
CMR \(\frac{a^2b^2}{a^2+a^2b^2+b^2}+\frac{b^2c^2}{b^2+b^2c^2+c^2}+\frac{a^2c^2}{a^2+a^2c^2+c^2}\le1\)
Cho a,b,c là các số dương. CM bđt:
\(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le\frac{1}{4}+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho các số thực dương a,b,c. Chứng minh rằng :
\(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\)< \(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\)
Cho các số thực a,b,c\(\ge\)1.CMR
\(\frac{1}{2a-1}+\frac{1}{2b-1}+\frac{1}{2c-1}+3\ge\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\)
a, Cho x,y,z là các số dương. Chứng minh rằng: x7 + y7 > x3y3(x+y)
b, Cho a,b,c là các số dương thỏa mãn abc = 1. Chứng minh rằng :
\(\frac{a^2b^2}{a^7+a^2b^2+b^7}+\frac{b^2c^2}{b^7+b^2c^2+c^7}+\frac{c^2a^2}{c^7+c^2a^2+a^7}\)< 1