Xét tam giác MNC có 2 đường cao CA và NB cắt nhau tại B
\( \Rightarrow \) B là trực tâm của tam giác MNC
\( \Rightarrow MB \bot CN\)
Xét tam giác MNC có 2 đường cao CA và NB cắt nhau tại B
\( \Rightarrow \) B là trực tâm của tam giác MNC
\( \Rightarrow MB \bot CN\)
Cho tam giác ABC. Kẻ tia phân giác At của góc tạo bởi tia AB và tia đối của AC. Chứng minh rằng nếu đường thẳng chứa tia At song song với đường thẳng BC thì tam giác ABC cân tại A.
Chứng minh rằng tam giác có đường trung tuyến và đường cao xuất phát từ cùng một đỉnh trùng nhau là một tam giác cân.
Kí hiệu \({S_{ABC}}\) là diện tích tam giác ABC. Gọi G là trọng tâm tam giác ABC, M là trung điểm BC.
a) Chúng minh \({S_{GBC}} = \dfrac{1}{3}{S_{ABC}}\)
Gợi ý: Sử dụng \(GM = \dfrac{1}{3}AM\) để chứng minh \({S_{GMB}} = \dfrac{1}{3}{S_{ABM}},{S_{GCM}} = \dfrac{1}{3}{S_{ACM}}\).
b) Chứng minh \({S_{GCA}} = {S_{GAB}} = \dfrac{1}{3}{S_{ABC}}\).
Có một mảnh tôn hình tròn cần đục lỗ ở tâm. Làm thế nào để xác định được tâm của mảnh tôn đó?