Hướng dẫn giải:
Gọi C1, C2, C3 lần lượt là độ dài của các nửa đường tròn đường kính AC, AB, BC, ta có:
C1 = π. AC (1)
C2 = π.AB (2)
C3 = π.BC (3)
So sánh (1), (2), (3) ta thấy:
C2 + C3 = π(AB +BC) = π. AC (vì B, nằm giữa A, C).
Vậy C1 = C2+C3.
Gọi C1, C2, C3 lần lượt là độ dài của các nửa đường tròn đường kính AC, AB, BC, ta có:
C1 = π. AC (1)
C2 = π.AB (2)
C3 = π.BC (3)
So sánh (1), (2), (3) ta thấy:
C2 + C3 = π(AB +BC) = π. AC (vì B, nằm giữa A, C).
Vậy C1 = C2+C3.
Gọi C1, C2, C3 lần lượt là độ dài của các nửa đường tròn đường kính AC, AB, BC, ta có:
C1 = π. AC (1)
C2 = π.AB (2)
C3 = π.BC (3)
So sánh (1), (2), (3) ta thấy:
C2 + C3 = π(AB +BC) = π. AC (vì B, nằm giữa A, C).
Vậy C1 = C2+C3.