Áp dụng \(\frac{a}{b}>1\Leftrightarrow\frac{a+m}{b+m}< \frac{a}{b}< \frac{a-m}{b-m}\) (a;b;m \(\in\) N*) ta có:
\(S=\frac{2}{1}.\frac{4}{3}.\frac{6}{5}.\frac{8}{7}.\frac{10}{9}...\frac{100}{99}\)
=> \(\frac{2}{1}.\frac{4}{3}.\frac{6}{5}.\frac{9}{8}.\frac{11}{10}....\frac{101}{100}< S< \frac{2}{1}.\frac{4}{3}.\frac{6}{5}.\frac{8}{7}.\frac{9}{8}...\frac{99}{98}\)
\(\Rightarrow\left(\frac{2}{1}.\frac{4}{3}.\frac{6}{5}\right)^2.\frac{8}{7}.\frac{9}{8}.\frac{10}{9}.\frac{11}{10}...\frac{100}{99}.\frac{101}{100}\) < S2 \(< \left(\frac{2}{1}.\frac{4}{3}.\frac{6}{5}.\frac{8}{7}\right)^2.\frac{9}{8}.\frac{10}{9}...\frac{99}{98}.\frac{100}{99}\)
=> \(\left(\frac{16}{5}\right)^2.\frac{101}{7}\) < S2 < \(\left(\frac{128}{35}\right)^2.\frac{100}{8}\)
=> 147 < S2 < 167
=> 144 < S2 < 169
=> 122 < S2 < 132
=> 12 < S < 13 (đpcm)