\(\Rightarrow3B=3^2+3^3+3^4+...+3^{101}\\ \Rightarrow3B-B=3^2+3^3+...+3^{101}-3-3^2-3^3-...-3^{100}\\ \Rightarrow2B=3^{101}-3\\ \Rightarrow B=\dfrac{3^{101}-3}{2}\)
B = 31 + 32 + 33 + .... + 399 + 3100
3B = 3(31 + 32 + 33 + ..... + 399 + 3100)
3B = 32 + 33 + 34 +...... + 3100 + 3101
3B - B = 2B = (32 + 33 + 34 + .... + 3100 + 3101) - ( 31 + 32 + 33 + .... + 3100)
2B = (32 - 32) + (33 - 33) +.....+ ( 3100 - 3100) + ( 3101 - 1)
2B = 0 + 0 + 0 + ..... +0 + 3101 - 1
2B = 3101 - 1
B = (3101 - 1) : 2