\(A=p^4\Rightarrow A\) có các ước dương: \(\left\{1;p;p^2;p^3;p^4\right\}\)
\(1+p+p^2+p^3+p^4=k^2\)
\(\Leftrightarrow4p^4+4p^3+4p^2+4p+4=\left(2k\right)^2\)
Ta có:
\(4p^4+4p^3+4p^2+4p+4=\left(2p^2+p\right)^2+3p^2+4p+4>\left(2p^2+p\right)^2\)
\(4p^4+4p^3+4p^2+4p+4=\left(2p^2+p+2\right)^2-5p^2< \left(2p^2+p+2\right)^2\)
\(\Rightarrow\left(2p^2+p\right)^2< \left(2k\right)^2< \left(2p^2+p+2\right)^2\)
\(\Rightarrow\left(2k\right)^2=\left(2p^2+p+1\right)^2\)
\(\Rightarrow4p^4+4p^3+4p^2+4p+4=\left(2p^2+p+1\right)^2\)
\(\Leftrightarrow p^2-2p-3=0\Rightarrow p=3\)