Bài 1: Cho tam giác cân ABC (AB=AC). BD và CE là hai phân giác của gam giác. a)Chứng minh: BD=CE b) Xác định dạng của tam giác ADE c) Chứng minh DE//BC
giúp mình với
Cho tam giác ABC vuông tại A, Có AB=6cm: AC=8cm
A, Độ dài cạnh BC và chu vi tam giác ABC.
,B Đường phân giác của góc B cắt AC tại D. Vẽ DH vuông góc với BC
Chứng Minh: Tam giác ABD= Tam giác HBD
C, Chứng Minh DA<DC
Cho tam giác ABC nhọn (AB<AC). AM là đường phân giác của đỉnh A, trên cạnh AC lấy điểm D sao cho AD=AB, tia AB cắt tia DM tại E. Chứng minh tam giác CME cân
Cho tam giác cân ABC, AB = AC. Trên các cạnh AB, AC lần lượt lấy hai điểm P, Q sao cho AP = AQ. Hai đoạn thẳng Cp, BQ cắt nhau tại O. Chứng minh rằng :
a) Tam giác OBC là tam giác cân
b) Điểm O cách đều hai cạnh AB, AC
c) AO đi qua trung điểm của đoạn thẳng BC và vuông góc với nó
cho tam giác ABC có AB,AC . Tia phân giác góc A cắt cạnh BC tại D trên cạnh AC lấy E sao cho AE=AB A) so sánh DB và DE
b) chứng minh AC-AB>DC-DB
Cho tam giác ABC vuông tại A trên mặt phẳng BC không chứa A dựng tam giác BDC vuông cân tại D. Chứng minh AD là tia phân giác của góc A
Cho tam giác ABC=90 độ và AB<AC. Trên cạnh AC lấy điểm D sao cho AD=AB. Trên tia đối của tia AB lấy điểm E sao cho AE=AC. a. CM DE=BC b. CM DE vuông góc vs BC c. Biết 4. góc B=5.Góc . Tính góc AED.