a) Xét \(\Delta ABD,\Delta ACE\) có :
\(\widehat{ADB}=\widehat{AEC}\left(=90^{^O}\right)\)
\(AB=AC\) (gt)
\(\widehat{A}:Chung\)
=> \(\Delta ABD=\Delta ACE\left(g.c.g\right)\)
=> \(BD=CE\) (2 cạnh tương ứng)
b) Ta có : \(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\AE=AD\left(\Delta ABD=\Delta ACE\right)\end{matrix}\right.\)
Lại có ; \(\left\{{}\begin{matrix}E\in AB\\D\in AC\end{matrix}\right.\left(gt\right)\Rightarrow\left\{{}\begin{matrix}AB=AE+BE\\AC=AD+DC\end{matrix}\right.\)
Suy ra : \(BE=DC\left(AB-AE=AC-DC\right)\)
Xét \(\Delta BOE,\Delta COD\) có :
\(\widehat{BOE}=\widehat{COD}\) (đối đỉnh)
\(BE=CD\left(cmt\right)\)
\(\widehat{BEO}=\widehat{CDO}\left(=90^o\right)\)
=> \(\Delta BOE=\Delta COD\left(g.c.g\right)\)
c) Xét \(\Delta ABO,\Delta ACO\) có :
\(AB=AC\left(gt\right)\)
\(AO:Chung\)
\(BO=OC\) (từ \(\Delta BOE=\Delta COD\left(cmt\right)\)
=> \(\Delta ABO=\Delta ACO\left(c.c.c\right)\)
\(\Rightarrow\widehat{BAO}=\widehat{CAO}\) (2 góc tương ứng)
Do đó : AO là tia phân giác của \(\widehat{BAC}\)
d) Xét \(\Delta AED\) cân tại A (AE = AD) có :
\(\widehat{AED}=\dfrac{180^{^O}-\widehat{A}}{2}\left(1\right)\)
Xét \(\Delta ABC\) cân tại A (AB=AC) có :
\(\widehat{ABC}=\dfrac{180^{^O}-\widehat{A}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{AED}=\widehat{ABC}\left(=\dfrac{180^{^O}-\widehat{A}}{2}\right)\)
Mà thấy : 2 góc này ở vị trí đồng vị
Do đó : \(DE//BC\left(đpcm\right)\)