Cho biểu thức: P = \(\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a, Rút gọn P
b, Tìm giá trị của a để \(P>\frac{1}{6}\)
Cho \(A=\left(\frac{\sqrt{a}}{2}-\frac{1}{2 \sqrt{a}}\right)^{2} \cdot\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
a) Rút gọn A
b) Tìm a để A<0
c) Tìm a để A=-2
Rút gọn:
a) \(A=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\left(x\ge0,x\ne1\right)\)
b) \(B=\left(\frac{2-a\sqrt{a}}{2-\sqrt{a}}+\sqrt{a}\right)\left(\frac{2-\sqrt{a}}{2-a}\right)\left(a\ge0,a\ne2,a\ne4\right)\)
c) \(C=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\left(x>0,x\ne1\right)\)
Rút gọn biểu thức:
a) \(A=\left(2\sqrt{4+\sqrt{6-2\sqrt{5}}}\right).\left(\sqrt{10}-\sqrt{2}\right)\)
b) \(B=\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}+\frac{\sqrt{a}+1}{\sqrt{a}-1}\right).\left(1-\frac{2}{a+1}\right)^2\) với \(a>0,a\ne1\)
Cho A = \(\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\)
a) Rút gọn A
b) Tính A với a = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
P=\(\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right).\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\)
a,Rút gọn P
b,Tính giá trị biểu thức P khi a=\(\frac{\sqrt{6}}{2+\sqrt{6}}\)
Bài 1 1) Tính a)\(\frac{\sqrt{5}}{4}-\frac{1}{\sqrt{5}-1}\) b)\(\left(8\sqrt{27}-6\sqrt{48}\right):\sqrt{3}\) 2) Cho\(A=\left(1-\frac{4}{\sqrt{x}+1}+\frac{1}{x-1}\right):\frac{x-2\sqrt{x}}{x-1}\left(x>0,x\ne1,x\ne4\right)\)Rút gọn b)Tìm x để A =\(\frac{1}{2}\) Bài 2 Cho biểu thức \(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\) a) Tìm điều kiện xác định ,Rút gọn A b) tình giá trị của A khi \(x=3-2\sqrt{2}\) (Mình xin cảm ơn)
Rút gọn:
a) \(B=\left(\frac{2-a\sqrt{a}}{2-\sqrt{a}}+\sqrt{a}\right)\left(\frac{2-\sqrt{a}}{2-a}\right)\left(a\ge0,a\ne2,a\ne4\right)\)
b) \(C=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\left(x>0,x\ne1\right)\)
rút gọn
a. A=\(\frac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
b. B=\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)