cho a,b là các số dương thỏa mãn \(a+b\ge1\)
chứng minh \(\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab\le7\)
Cho các số thực dương a,b,c,d. Chứng minh rằng: \(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{1}{\left(1+c\right)^2}+\frac{1}{\left(1+d\right)^2}\ge1\)
1.Giải phương trình sau: [x-2015] + [2x-2016]= x-2017
2. Cho ba số thực a,b,c khác nhau thỏa mãn: \(a+\frac{2020}{b}=b+\frac{2020}{c}=c+\frac{2020}{a}\). Chứng minh rằng \(a^2+b^2+c^2=2020^3\)
3. Cho a,b,c là số dương thỏa mãn a+b+c=9. Chứng minh: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)
4. Chứng minh bất đẳng thức sau vớ a,b,c là các số dương: \(\left(a+b+c\right)\times\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
5. Cho a >0, b >0, c >0. Chứng minh rằng: \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)
Cho các số dương a,b,c thỏa mãn a+b+c = 1. Chứng minh
\(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\ge1\)
Cho a,b > 0. Cmr :
a) \(\left(1+\frac{a}{b}\right)^5+\left(1+\frac{b}{a}\right)^5\ge64\)
b) \(\frac{1}{1+3ab+a^2}+\frac{1}{1+3ab+b^2}\ge1\) với a + b = 1.
a, cho a và b là các số tùy ý, chứng minh rằng
\(a^2+b^2+1\ge ab+a+b\)
b, cho a và b là hai số cùng dấu, cmr
\(\frac{a}{b}+\frac{b}{a}\ge2\)
Cho a,b,c > 0 . Chứng minh rằng: \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}+\frac{c}{\sqrt{a}}\ge2\left(\frac{a}{b+1}+\frac{b}{c+1}+\frac{c}{a+1}\right)\)
Cho a,b,c >0, a+b+c=1
CMR: \(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\ge1\)
Cho a, b, c > 0 và a + b + c + ab + bc + ca = 6abc. Chứng minh rằng
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\) ≥ 3