Bài 1: Cho biểu thức:
\(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2-1+a}}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\left(0< a< 1\right)\)
a) Rút gọn Q
b) So sánh Q và Q3
Bài 2: Cho biểu thức:
\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\left(x\ge0;x\ne25\right)\)
a) Rút gọn P. Tìm các số thực để P > -2
b) Tìm các số tự nhiên x là số chính phương sao cho P là số nguyên
Bài 3: Cho biêu thực:
\(P=\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}+\frac{x^2+\sqrt{x}}{x\sqrt{x}+x}\left(0< x\ne1\right)\)
a) Rút gọn P
b) Tính giá trị của biểu thức P khi x = \(3-2\sqrt{x}\)
c) Chứng minh rằng với mọi giá trị của x để biểu thức P có nghĩa thì biểu thức \(\frac{7}{P}\) chỉ nhận một giá trị nguyên.
Rút gọn các biểu thức sau:
a) A=\(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}+\frac{2\sqrt{2}-\sqrt{6}}{\sqrt{2}}\)
b)B=\(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\left(x\ge0;x\ne1\right)\)
cho \(A=\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\) và \(B=\frac{1}{\sqrt{x}-1}-\frac{x+2}{x\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\left(x\ge0,x\ne1\right)\)
a) Tính giá trị biểu thức A khi x = 2
b) Rút gọn biểu thức B
c) Tìm x sao cho biểu thức C = -A.B nhận giá trị nguyên
Cho biểu thức \(M=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\) với \(x\ge0;x\ne1\)
a. Rút gọn M
b. Tìm số nguyên x để M có giá trị là số nguyên
Cho biểu thức: \(M=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\left(x\ge0;x\ne1\right)\)
a, Rút gọn biểu thức M.
b, Tìm x để \(M< \frac{1}{2}\)
Câu 1/
a) \(\sqrt{8}-\sqrt{18}+\sqrt{32}\)
b) \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{2}\)
c) \(\frac{1}{2-\sqrt{3}}-\frac{1}{2+\sqrt{3}}\)
Câu 2/
Cho \(A=\left(\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+1}\right)\left(\frac{x-1}{\sqrt{x}-1}-2\right)\)
(Với \(x\ge0,x\ne1\))
a) Rút gọn biểu thức A
b) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên
Câu 3/
Giai phương trình:
\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)
Cho biểu thức \(Q=\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right):\left(1-\frac{2\sqrt{x}}{x+1}\right)\) với \(x\ge0;x\ne1\) .
a, Rút gọn Q.
b, Tìm x sao cho Q < 0.
Bài 1: Cho các số thực dương a,b ; a≠b. Chứng minh:
\(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)
Bài 2: Cho các biểu thức; \(P=\frac{5x-12\sqrt{x}-32}{x-16}\) và \(Q\left(x\right)=x+\sqrt{x}+3\).
a) Tìm số nguyên x0 sao cho P(x0) và Q(x0) là các số nguyên, đồng thời P(x0) và ước của Q(x0)
b) Cho \(t=\frac{x}{x^2-x+1}\). Tính giá trị biểu thức \(A=\frac{x^2}{x^4+x^2+1}\) theo t
Bài 3: Cho biểu thức:
\(T=\left(\frac{x+4\sqrt{x}+4}{x+\sqrt{x}-2}+\frac{x+\sqrt{x}}{1-x}\right):\left(\frac{1}{\sqrt{x}+1}-\frac{1}{1-\sqrt{x}}\right)\left(x>0;x\ne1\right)\)
Rút gọn biểu thức T. Có bao nhiêu giá trị của x để \(A\ge\frac{1+\sqrt{2018}}{\sqrt{2018}}\)
P = (1 - \(\frac{2\sqrt{x}}{x+1}\)) : (\(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}+x+1}\left(x\ge0,x\ne1\right)\)
a, Rút gọn P
b, Tìm giá trị của P khi x = \(2020-2\sqrt{2019}\)